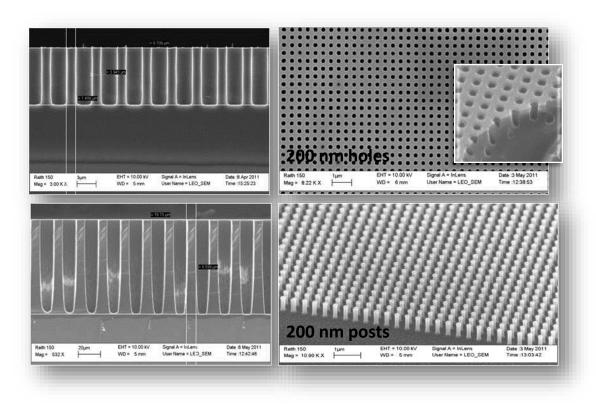
User-Facility Capabilities

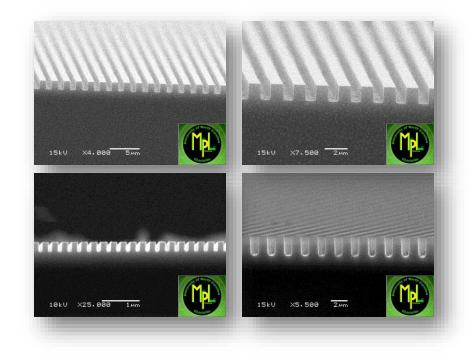
Center for Optoelectronics and Optical Communications



Prof. Glenn Boreman Chair, Department of Physics & Optical Science Director, Optoelectronics Center gboreman@uncc.edu 704 687 8173

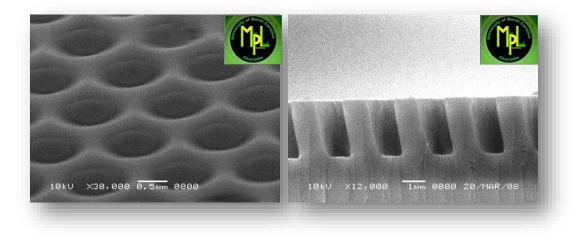
STS Advanced Silicon Etch (ASE) ICP

Contact: Robert Hudgins


Process achieves high microns/minute rate anisotropic etching using the Bosch process

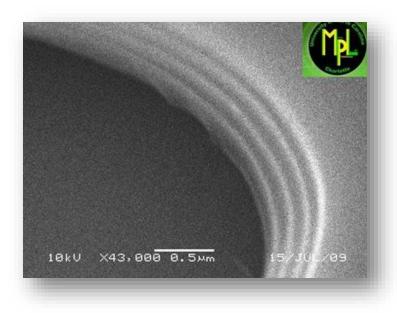
- Vertical etch depths of >0.5 mm
- Aspect ratios approaching 20:1
- Gases: C_4F_8 , O_2 , SF_6 , Ar, He

STS III-V Multiplex Pro ICP Etch System


Contact: Robert Hudgins

- Inductively Coupled Plasma system uses chlorine based chemistry to etch compound semiconductor materials such as GaAs, GaN, InP, GaP, SiC, and AL₂0₃
- Uniform anisotropic etching of thin film materials
- Power RF generators
- Gases: Ar, O₂, SF₆, SiCl₄, He, N₂, Cl₂, BCl₃

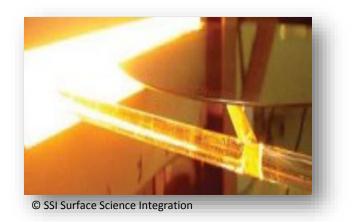
STS Advanced Oxide Etcher (AOE)



Contact: Robert Hudgins

- Employs fluorine plasma chemistries to etch dielectrics, including SiO2 and Si3N4
- Available Gases: SF6, O2, C4F8, H2, CHF3, He
- RF Power:
 - Coil 3 Kw at 13.56 MHz
 - Platen 600 w at 13.56 MHz

STS PECVD Multiplex Pro



Contact: Robert Hudgins

- High quality SiO_2 , Si_3N_4
- Uses 100 mm substrates
- Low frequency and high frequency generation
- Gases: $C_4F_8O_2$, NH_3 , N_2 , N_2O , SiH_4

SSI Solaris 150 Rapid Thermal Processor

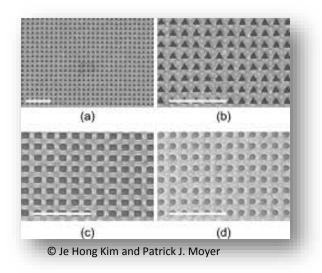
Contact: Robert Hudgins

- Process up to 150mm-dia substrates at a temperature range from RT-1000° C
- Temperature Ramp-Up 25°C/sec
- PID process controller ensures accurate temperature stability and uniformity
- Designed for silicon implant annealing and monitoring, compound semiconductor implant activation and ohmic contact alloying

Deposition/ Etching

Gases: N₂, Ar, O₂

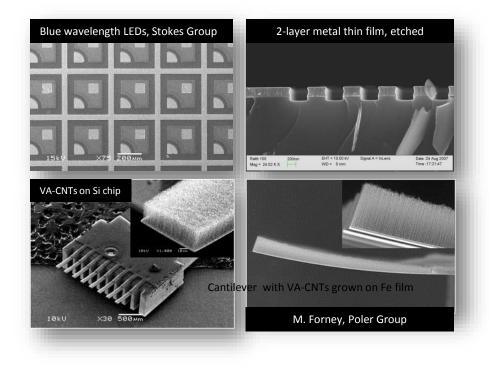
AJA ATC 1800-F Sputter Deposition System



Contact: Robert Hudgins

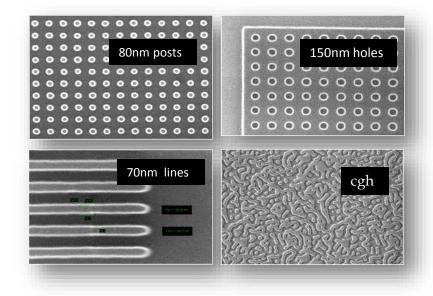
- ATC 1800-F sputter deposition system
- Wafers up to 150 mm in diameter
- Single layer, sequential, or co-sputtered processes
- Platen can be rotated for enhanced thickness uniformity
- Gas: Ar

AJA ATC 1500-F Ion Mill System


Contact: Robert Hudgins

- 250 mm diameter ion source
- Process substrates up to 150 mm in diameter
- Two mass flow controllers
- Removes thin film materials that cannot be plasma etched
- Gases: Ar

Lesker PVD 75 Thin Film Evaporation System


Contact: Lou Deguzman

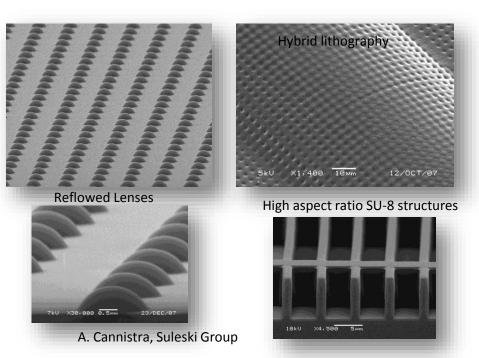
- Electron-beam and thermal evaporation system
- 10⁻⁸ Torr Vacuum
- Capacity of processing three 100 mm wafers or a single 150, 200, or 300 mm wafer
- Runs in manual or automatic mode
- Up to 4 deposition materials
- Beneficial for lift-off metallization

Imprio100 Nanoimprint System

Contact: Lou Deguzman

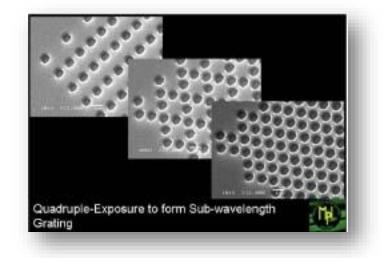
- Step and Flash Imprint Lithography Technology
- Resolution : sub-50 nm
- Alignment : < 500 nm
- Wafer handling: up to 8-inch diameter wafers
- 6", 4" and 3" diameter wafer chucks available
- Field size : 25 mm maximum
- Mini-environment: Class 3

Raith 150 E-Beam Lithography System


Contact: Lou Deguzman

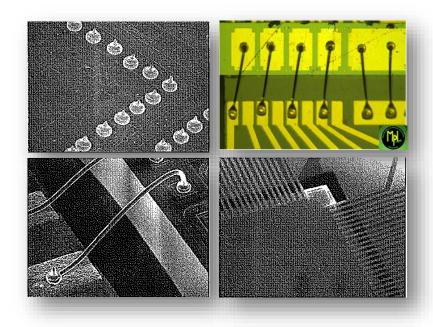
- 180 nm lines on 360 nm pitch 0000 000 100nm posts IR polarization filter on silicon 160 nm pitch grating
- Ultra high resolution patterning
- Minimum feature size < 20 nm</p>
- Overlay capability: < 60 nm</p>
- Stitching capability: < 60 nm</p>
- Magnification: 20x 1,000,000x
- Ultra high resolution imaging

Quintel Mask Alignment System


Contact: Lou Deguzman

- For 100mm and 150mm wafers, and piece parts
- Vacuum, pressure, and proximity mask exposure
- Sub-um lithography in vacuum contact mode
- Split Field Alignment Microscope
- Overlay accuracy:
 - Frontside alignment: ~ 0.5 um
 - Backside alignment: ~ 1 to 2 um

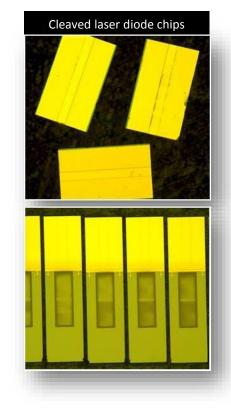
GCA 5X Stepper



Contact: Robert Hudgins

- 5X reduction projection lithography tool
- G-Line 436 nm wavelength
- 4" 1mm thick wafers, silicone and fused silica
- Single wafer chuck

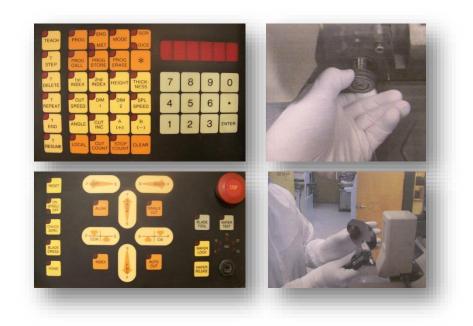
K & S 4524 Digital Ball Wire Bonder



Contact: Robert Hudgins

- Ball-Wedge bonding wire capability
- Olympus microscope and spotlight targeting
- Deep access capability
- Flat substrate holder with built-in temperature controller
- Motorized Y axis and programmable auto-stepback function for precise wire length and loop formation
- Auto-2nd bond mode for complete single wire programmed sequence
- Digital readout of all parameters etc

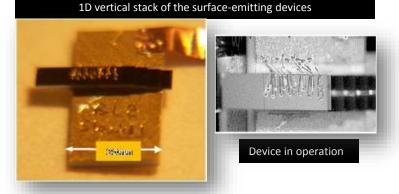
Scribe and Break Tool, Loomis LSD-100


Contact: Robert Hudgins

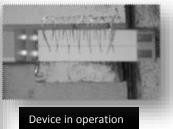
- Precise (~10mm) Scribing and Breaking
- Roller-Style Breaker
- Motorized Rotation Control
- 4" (100mm) Wafer Capability
- Color Camera
- Machine Control Software

Dicing Saw, MicroAutomation 1100

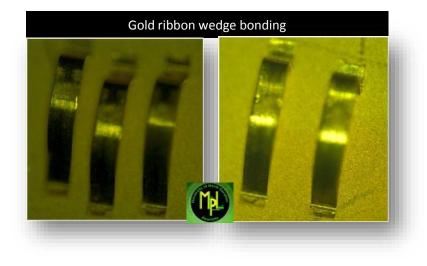
Contact: Robert Hudgins


- Programmable, Microprocessor-controlled, automatic saw for cutting semiconductor wafers and other hard material
- Split field video system for aligning wafers before cutting, for program and data display, and for monitoring
- Cuts maximum 150mm substrates up to 500mils thickness
- Spindle speed from 15000-40000 rpm

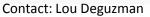
FineTech Flip Chip Bonder

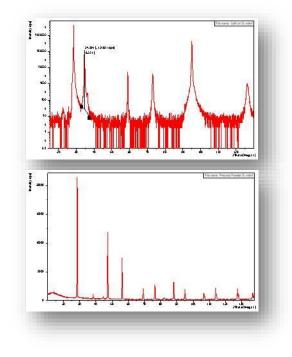

Contact: Robert Hudgins

- Flip-Chip bonding capability
- Substrates up to 50x50 mm²
- Placement accuracy is ± 1.0 μm
- PC-controlled heating plate (up to 400°C)
- Bonding force range: 0.1 N 500 N


(2x2) 2D vertical assembly of the surface-emitters bars

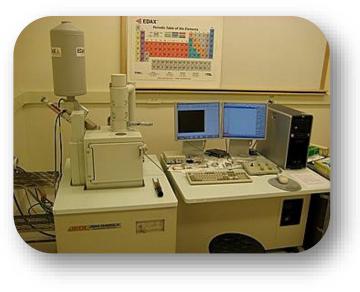
K&S Digital Wedge Bonding System

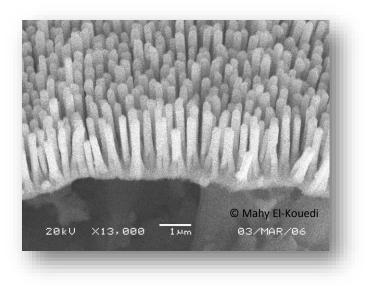



Contact: Robert Hudgins

- Gold ribbon (<250mm-wide) wiring for high-speed and highcurrent application
- Nikon microscope and spotlight targeting
- Deep access capability
- Flat substrate holder with built-in temperature controller
- Motorized Y axis and programmable auto-stepback function for precise wire length and loop formation
- Digital readout of all parameters

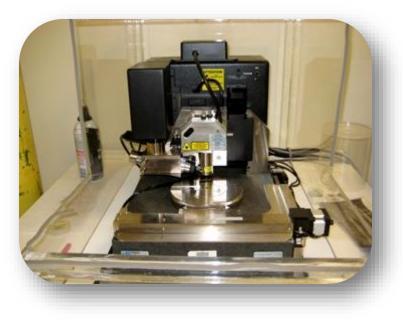
PANalytical X-Ray Diffractometer (XRD)

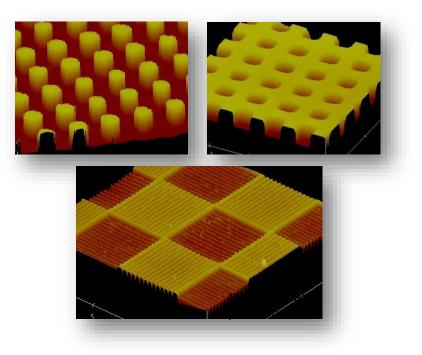




- Advanced materials science and nanotechnology diffraction
- Metrologic characterization in semiconductor process development
- It can handle a wide range of applications, and is especially suitable for thin film analysis applications such as:
 - Rocking curve analysis and reciprocal space mapping
 - Reflectometry and thin film phase analysis
 - Residual stress and texture analysis

JEOL SEM w/EDAX




Contact: Lou Deguzman

- Maximum Magnification: 300,000
- Resolution: 3 nm
- Capable of both high and low vacuum operation
- Acceleration Voltages: 0.3 Kv to 30 Kv
- System includes EDAX x-ray analysis for material characterization

Dimension 3100 SPM System with NanoScope IV Controller AFM

Contact: Robert Hudgins

Surface imaging technique for analyzing nanoscale and atomic structures

- Sub-nm Resolution
- Multiple scanning modes, including:
 - Contact
 - Tapping
 - Magnetic

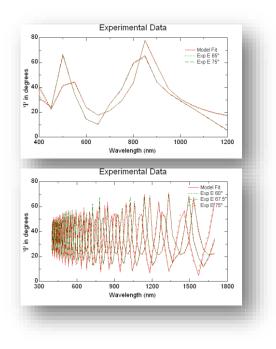
3D Measuring Laser Microscope

Contact: Robert Hudgins

Seven Measurement Modes:

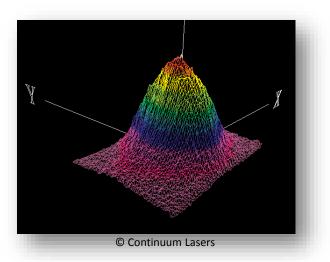
- Step Measurement
- Surface Roughness Measurement
- Area/Volume Measurement
- Particle Measurement
- Film Thickness Measurement
- Under Geometric Measurement
- Auto Edge Detection Measurement

0


- Five Key Laser Technologies:
 - Under short-wavelength laser source
 - Confocal Optical System
 - XY Scan
 - Real Color Image Acquisition
 - Linear Scale Z-scanning

VASE Spectroscopic Ellipsometer

Contact: Lou Deguzman


- Spectral Range: 193 to 1700 nm
- WVASE32[®] data analysis software
- Measures:
 - Thin film thickness
 - Optical constants (n and k)
 - Spectral transmittance and reflection
- Focusing optics for 200 um spot size

Nd YAG Laser and Optical Parametric Oscillator OPO

Contact: Scott Williams

Continuum Pulsed Q-switched Nd YAG 8000 series Laser

- Warms up to full energy in less than 5 minutes
- Excellent beam quality and pointing stability

Panther OPO (Optical Parametric Oscillator)

- Linewidth of down to less than 1.5 cm-1
- Signal energies to > 150 mJ per pulse
- Complete tunability with no degeneracy gap (205 2550 nm)

Laser Facility

Contact Information

Dr. Glenn Boreman, Center Director 704-687-8173, gboreman@uncc.edu

Mark Clayton, Communications/Website 704-687-8117, mclayton@uncc.edu

Dr. Lou Deguzman, Research Staff 704-687-8111, <u>pcdeguzm@uncc.edu</u>

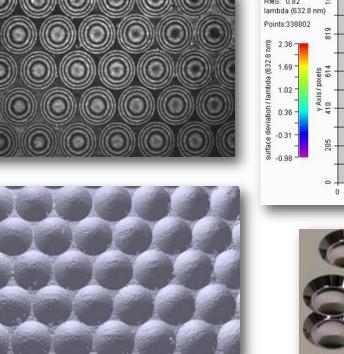
Dr. Robert Hudgins, Cleanroom Operations Manager 704-687-8125, <u>rhudgins@uncc.edu</u>

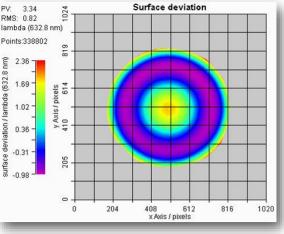
Tracee Jackson, Business Manager 704-687-8106, <u>tjacks64@uncc.edu</u>

Scott Williams, Research Operations Manager 704-687-8126, <u>scotwill@uncc.edu</u> UNCC's Optoelectronics Center has capabilities complementary to CPM in the area of **optical metrology**.

These include precise measurement of dimensional metrology for films and optical elements, measurement of optical properties of materials, and scattered light instrumentation for surface-finish assessment.

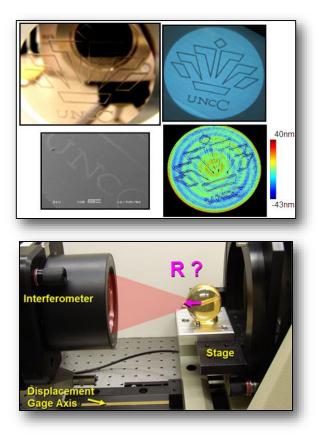
All instruments listed are available in UNCCs user facility.


Contact Info: Dr. Glenn Boreman, Dept. Chair & Center Director gboreman@uncc.edu, 704 687 8173


Dr. Angela Davies, Professor – Optical Metrology adavies@uncc.edu, 704 687 8135

Micro-Interferometer

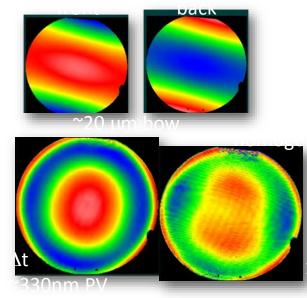
Contact: Angela Davies



- Optic characterization (mm-scale) 633 nm wavelength
- Form metrology of near flat and spherical optical-quality components (2mm 10mm aperture)
- Radius of curvature (1mm 30mm)
- Optical system alignment

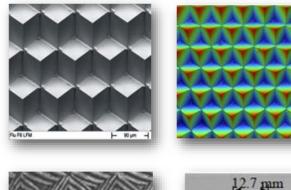
Phase Shifting Interferometer

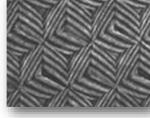
Contact: Angela Davies

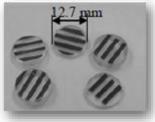

- 633 nm wavelength
- Form metrology of near flat and spherical optical-quality components
- Radius of curvature (1cm-1m)
- Optical system alignment
- 4" 0.6" aperture (flat measurements)

Wavelength Scanning Interferometer

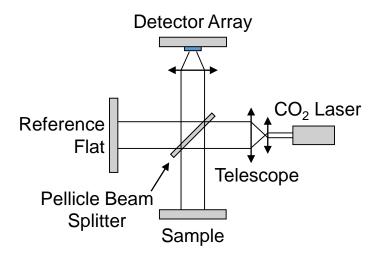
Contact: Angela Davies

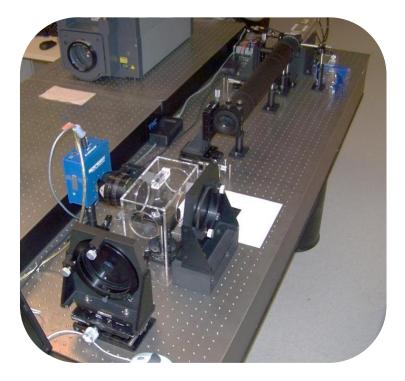

- 1550 nm wavelength
- Absolute thickness as low as 1mm
- 4"-1" aperture
- Homogeneity
- Window dimensional metrology
 - Wedge and flatness (thickness variation)




dFront Surface Back Surface MST Gauge Block: L NdYAG Cryst 34 ppm PV

Micro-optic Reflection and Transmission Interferometer

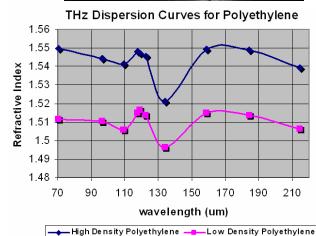



Contact: Angela Davies

633 nm wavelength 0

- Sub-mm Aperture Lenses
 - Form Error
 - ۲ Radius
 - 0
 - Focal Length Wave front Aberration

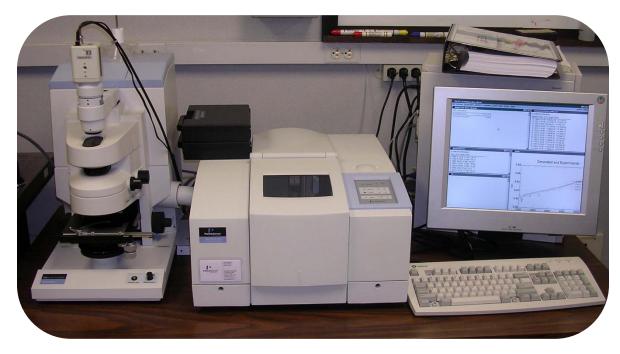
10 micron Twyman-Green Interferometer


- 10.6 um wavelength Testing LWIR Optics ۲ ۲

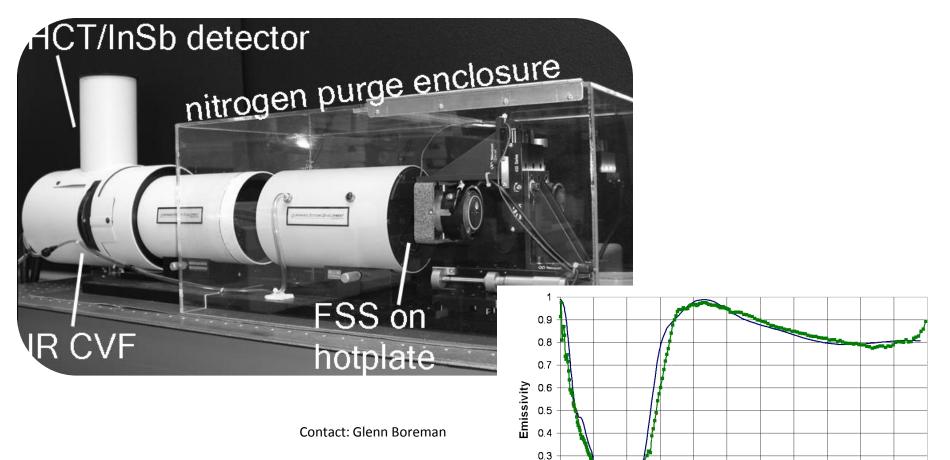
Tunable THz Laser

Line tunable: 300 GHz to 7 THz (1 mm to 42 um).

This unique source enables materials characterization, sensor characterization, component development. Material characterization in the THz region: Reflection, transmission, material dispersion. Can also characterize smoke & dust.


Ellipsometers

Measure refractive index, attenuation, conductivity from 400 nm (blue end of VIS) to 40 um in the far IR (continuous coverage)


FTIR Microscope

Measure reflection, transmission, absorption in SWIR, MWIR & LWIR 100 um spatial resolution

IR Spectro-radiometer

Measure surface emissivity in MWIR & LWIR Near-plane imaging and far-field imaging available

0.2

0.1

0 + 3

4

5

6

8

Wavelength [µm]

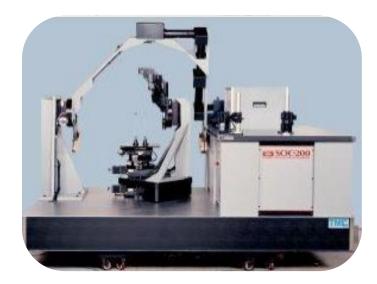
9

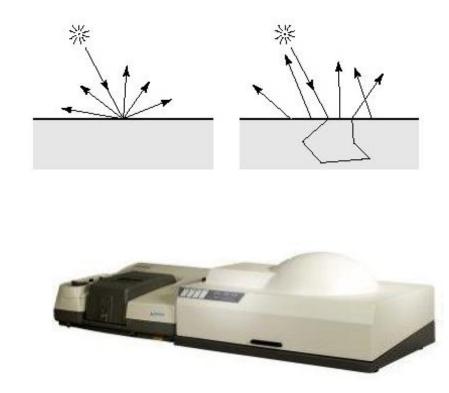
10

11

12

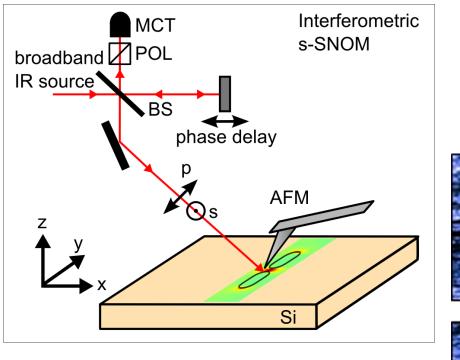
Measured

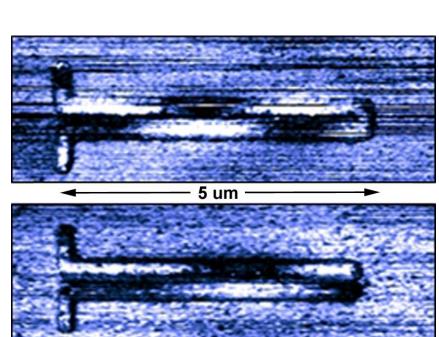

EM Model


13

14

Scatterometers


Measure surface roughness & subsurface damage using scattered light VIS and LWIR laser, as well as spectrally resolved MWIR/LWIR



E-field Mapper

Measure vector electric field in 3D with 20 nm spatial resolution

Contact: Glenn Boreman

Optical Communication Infrastructure Facility

Contact Info: Dr. Glenn Boreman, Dept. Chair & Center Director gboreman@uncc.edu, 704 687 8173

Scott Williams, Research Operations Manager Center for Optoelectronics and Optical Communications

scotwill@uncc.edu, 704 687 8126

opticscenter.uncc.edu

Scott Williams 704-687-8126 scotwill@uncc.edu

Fiber Optic Connector Assembly

- Connector assembly of most major connectors and manufacturers including.
 - FC, FC/Angle, SC, SC/Angle, ST, LC, MU, MTRJ, FDDI, ESCON, DIN, Biconic, SMA
- Assemblies done on most size fiber including large core.
 - 250um coated
 - 900um coated
 - 1.6mm Jacketed
 - 2.0mm Jacketed
 - 3.0mm Jacketed
- Assembles on large count cables.
 - Loose Tube
 - Distribution
 - Breakout

opticscenter.uncc.edu

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

Fiber Optic Connector Testing

- Connector end face inspection at 400x for most connector styles
- Connector testing for most connector style.
 - (IL) Insertion Loss
 - (RL) Return Loss
- End Face Geometry checked with Norland Connect-Check 6000
 - Apex Offset
 - Fiber Protrusion/Undercut
 - Radius of Curvature
 - Angle
- Full reporting Capabilities

opticscenter.uncc.edu

Contact: Scott Williams 704-687-8126 scotwill@uncc.edu

Technical Data

Current Connector Types MT

Connector types that can be added

Pressure Type

Platen Size

FC, LC, LC/Angle, LX.5, MT/Angle, MTRJ, MTRJ/Angle, MU, SC, SC/Angle, SMA, Ferrule Only

Pneumatic

5in.

Domaille Engineering Optical Fiber Polishing Machine Model: HDC-4000

opticscenter.uncc.edu

Seiko Instruments Optical Fiber Polishing Machine Model: OFL-12 Contact: Scott Williams 704-687-8126 scotwill@uncc.edu

Technical Data

Current Connector Types FC, FC/Angle

Connector types that can be added

Pressure Type

Platen Size

LC, LC/Angle, MU, MU/Angle, ST, SC, SC/Angle, E2000, E2000/Angle, Ferrule Only, Ferrule only/Angle

Spring

4in.

opticscenter.uncc.edu

Ultra Tec Ultrapol Fiber Lens Polisher Model: 6380.1 Contact: Scott Williams 704-687-8126 scotwill@uncc.edu

Technical Data

Cone, Chisel, Bevels
20 to 180 degrees
0.1 degrees
80 & 125um
5in.

opticscenter.uncc.edu

Contact: Scott Williams 704-687-8126 scotwill@uncc.edu

Technical Data

Fibers

Single-mode, multimode, dispersion-shifted, Polarization maintaining, erbium

Typical splice losses

0.02 dB SM fibers

Ericsson Fusion Splicer Model: FSU 975 PM-A

opticscenter.uncc.edu

Contact: Scott Williams 704-687-8126 scotwill@uncc.edu

Technical Data

Fibers

Single-mode, multimode, dispersion-shifted, Polarization maintaining,

Typical splice losses

0.07dB PM fibers 0.03dB SM fibers 0.02dB MM fibers

Typical Extinction ratio

>30dB

Fujikura Fusion Splicer Model: FSM-20PMII

opticscenter.uncc.edu

Contact: Scott Williams 704-687-8126 scotwill@uncc.edu

Technical Data

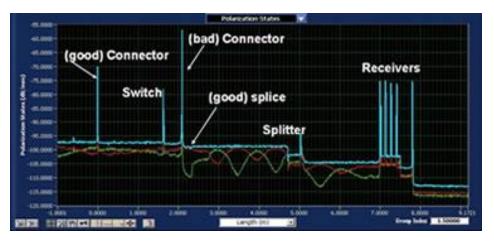
Fibers

Typical splice losses

Typical return loss

Single-mode, Multimode, Dispersion-shifted, Nonzero dispersion shifted, Cut-off shifted, Erbium doped 0.02dB SM fibers 0.01dB MM fibers 0.04dB NZDS fibers

>60dB


Fujikura Fusion Splicer Model: FSM-40S

opticscenter.uncc.edu

Luna Technologies Optical Backscatter Reflectometer Model: OBR

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

Measurement Highlights:

- High resolution OFDR Resolve individual features with spatial resolution down to 10 microns.
- High sensitivity 70 dB of dynamic range and -130 dB sensitivity.
- Long range Measure up to 2000 meters in length with a single connection, single scan.
- Single Connection IL and RL Measure insertion and return loss in a single scan.
- Locate loss events Monitor backscatter levels to isolate losses due to bends, crimps, bad splices.
- "Look inside" devices High resolution and sensitivity enable inspection of individual components within a subsystem.
- Polarization Tracking Track changes in the stateof-polarization as light propagates through an optical network.
- Intuitive graphical interface All key data and graphs in a simple, easy to use interface.
- Distributed sensing Use standard optical fiber to monitor the changes in temperature and strain

Wavelength Range 1530nm to 1620nm

Luna Technologies Screen Shot

opticscenter.uncc.edu

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

Luna Technologies Optical Vector Analyzer Model: OVA ST

Measurement Highlights:

The OVA simultaneously performs these optical component characterizations every second:

- Insertion Loss (IL)
- Return Loss (RL)
- Polarization Dependent Loss (PDL)
- Phase Response
- Group Delay (GD)
- Chromatic Dispersion (CD)
- Polarization Mode Dispersion (PMD) / Second Order PMD
- Min/Max Loss due to Polarization
- Impulse Response
- Jones Matrix Elements
- Phase Ripple Linear and Quadratic

Wavelength Range 1530nm to 1620nm

opticscenter.uncc.edu

Agilent All Parameter Analyzer Model: 81910A

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

Measurement Highlights:

The Agilent 81910A enables exhaustive analysis of advanced photonic devices, covering all physical properties relevant to DWDM components in a single solution:

Simultaneous all-optical measurement of:

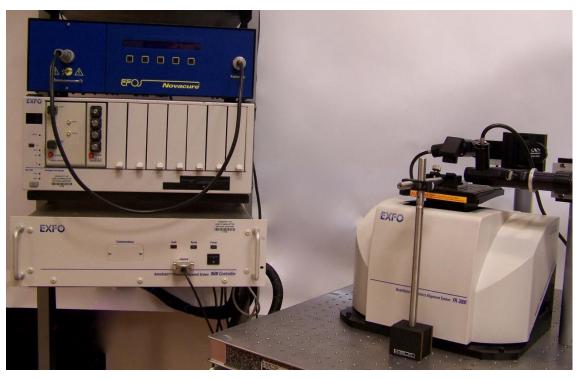
- (IL) Insertion loss
- (RL) Return Loss
- (PDL) Polarization Dependent Loss
- (GD) Group Delay
- (DGD) Differential Group Delay
- (CD) Chromatic Dispersion
- (PMD) Polarization Mode Dispersion

Direct access to Mueller Matrix and Jones Matrix for deepest insight into a device's transmission and reflection properties

Wavelength Range 1530nm to 1620nm

opticscenter.uncc.edu

Scott Williams 704-687-8126 scotwill@uncc.edu


Nano Robot System

- Ultrahigh performance in six degrees of freedom for the most demanding photonics applications
- Robust design suitable for the manufacturing floor as well as labs and clean rooms
- High stiffness and stability minimize drift during bonding and reduce effects of environmental vibration and temperature
- Independent axis control with full range of motion in six degrees of freedom eliminates detrimental translation and cross- coupling effects
- Incorporates patented INCHWORM[®] motor technology to deliver high 0.1-nm resolution and long travel

Novacure

Typical power output with a standard filter at 320-500nm: 23,400 mW/cm2

Exfo/Burleigh Nano Robot System Model: FR3000

Including

EFOS UV Curing System Model: Novacure

opticscenter.uncc.edu

Exfo

Optical Time Dominion Reflectometer Model: FTB400

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

Features and Benefits

- Modular 2 bay design.
- Touch screen for ease of use.
- Full color display
- Large internal storage with USB ports to retrieve data.

Current Module:

OTDR 1310nm and 1550nm

Expansion Modules Available

- Over 25 OTDR models covering all network testing applications, from core to access.
- Over 11 OLTS models for testing optical return loss (ORL) and insertion loss (IL).
- CD and PMD analyzer.
- OSA.
- SONET/SDH analyzers (up to 10 Gbit/s)
- Next-generation SONET/SDH analyzers.
- DSn/PDH analyzers.
- Ethernet analyzers (up to 10 Gbit/s).
- Fiber Channel analyzers.
- Switch module.
- Modular pulse-suppressor boxes (single mode and multimode)

opticscenter.uncc.edu

Bench Top Equipment and Custom Designed Test Arrangements

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

- Multiple Tunable Lasers covering from the S-Band through the C & L Bands.
- Wavelength Meters
- Power Meters
- Optical Spectrum Analyzers
- Optical Stages
- Motion Controllers
- Polarization Controllers
- Laser Drivers
- Free space optical meters and heads
- Optical Switches
- Erbium Doped Fiber Amplifiers
- Microscopes

opticscenter.uncc.edu

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

Capabilities

- Tunable wavelengths from 205nm to 2550nm
- a line width of down to less than 1.5 cm-1Power Meters

Continuum Optical Parametric Oscillator Model: Panther Continuum Nd:Yag Laser Model: Precision II 8000

opticscenter.uncc.edu

Continuum Nd:Yag Laser Model: MiniLite II

Contact:

Scott Williams 704-687-8126 scotwill@uncc.edu

- 1-15Hz adjustable repetition rates
- Up to 100mJ at 15Hz
- 1064, 532, 355, and 266nm

